趣站 > 杂谈 > 正文

​cos120度(cos120度是多少数值)

2024-01-29 17:29 来源:网络 点击:

cos120度(cos120度是多少数值)

我们通常把y=ax2+bx+c(a≠0)叫做变量x的二次函数。这个函数在直角坐标系上的图像是一条抛物线。

利用配方法,可以对函数y作以下变形:

凡是可以用二次函数来表示的实际问题,都可以运用上面的结论。

我们来看几道例题。

例1 用长度为m米的篱笆材料围成一个矩形场地,要使这块地的面积最大,应该如何确定边长?

这是一个二次函数。由于a=—1<0,所以y有最大值。运用上面的结论分析,可得

由此可知:

当矩形周长为定值时,以正方形的面积为最大。

例2 两数之和为16,问此两数取何值时,平方和最小?

解:设一个数为x,依题意另外一个数为16—x,设两数的平方和为y,可得

y=x2+(16—x)2

去括号并整理,得

y=2×2—32x+256

用配方法求解,可得

y=2(x2—16x+128)

=2(x2—16x+64—64+128)

=2[(x2—16x+82)+64]

=2[(x—8)2+64]

=2(x—8)2+128

显然,当(x—8)2=0时,y有最小值128,

∴x=8

当两数都是8时,平方和y有最小值128。

例3 一条直线上有相距100公里的A、B两点。甲车以每小时40公里的速度从A向B行驶,与此同时,乙车以每小时60公里的速度由B向C直线行驶(设∠ABC=120°)。问:经过多少时间后,甲与乙相距最短?

解:设经过x小时后,甲到达D,乙到达C,如下图所示,

∵∠ABC=120°,由余弦定理得

CD2=BD2+BC2—2BD·BC·cos120°

=(100—40x)2+(60x)2+2(100—40x)60x·0.5

=2800×2—2000x+10000

=400(7×2—5x+25)

图上的CD就是经过x小时后甲与乙的距离,而这个距离的平方是x的二次函数。显然,CD2与CD、7×2—5x+25同时取得极值。

由y=7×2—5x+25知a=7>0,因而

以上,介绍了配方法的重要应用:求二次函数的极值。求极值还有其它方法,例如判别式法,抛物线顶点法等,就不讲了,以免喧宾夺主,冲淡主题。

科学尚未普及,媒体还需努力。感谢阅读,再见。